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SUMECTED TO GYRCSCOPIC FCIRC~

A DISK

By M. H. Elrschberg and A. Mendelson

SUMMARY

The differential equation governing the deflection of a disk of var-
iable thiclmess subjetted to woscqic loading is derived. For the case
of a disk of ccmstant thickness, soluticms are obtaimed by a finite-
difference method for a rsnge of centrifugal loadtig parameter M frcm
O to 50, and the ratio of shaft to disk radii varying frcm 0.1 to 0.3.
Results-are presented h dimensicmless form suitable–for
The method for solving the problem of a disk of variable
a temperature gradient is also presented.

INTRODUCTION

design purposes.
thickness with

9 When the axis of rotatim of a disk is itself rotated, forces are
set up normal to the disk. These forces, or ~oscopic loads, occur on
Jet-engine compressor and turbtie disks whenever the airplane changes

s direction either in the air or on the ground. These gyroscapic forces
will deflect a disk out of its plane of rotation, induce vibratory bend-
ing stresses, ad prduce a bending manent that will increase the shaft
bearing loads. This problem may be even more serious for the high-speed
disks used in missiles undergoing high accelerations. Although the
stresses thus produced may not themselves be very large, the combined
effect of these stresses with the already =isting stress distribution
may be sufficient in some cases to cause a failure. It is therefore nec-
essary to investigate both the stresses and the deflections of a disk
under &yroscqic leading.

By considering the gyroscopic forces and centrifugal forces acting
on an element of a disk of variable thiclmess, the general differential
equation describtig the deflection is derived. A finite-clifference solu-
tion of this d~f erential eqwt ion is obtained for a constant-thickness
disk rotating about its center at a ccmstant angular velwity. The com-
puted deflections and the corresponding stresses are plotted in dimen-
sionless form for a wide range of a centrifugal-loading parameter, and
for a nmiber of different ratios of shaft to disk radii.
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FROXDURE

The general differential equation governing the deflection of a
disk of variable thiclcaesssubjected to gyroscupic loading is derived in
appendix B and the solution of this general equation is discussed in
RESULTS AND DISCUSSION. In this section the procedure used for obtad-
tig numerical solutions of this equation is present- for the special
case of a constsnt-thi.cknessdisk rotating about its center at a constsnt
angular velocity o sad at the ssme time about a dismeter fixed h space
at an angular velocity Q and an angular acceleration fi. (The symbols
used h this report are defined in appendix A.) Figure 1 shows such a
disk along with the type of lcad3ng that results from such rotations.

U

If the deflection at any petit such as P is given by w for this
disk, snd if the dimensionless deflection for a given angle 6J i,g de-

fined by

Y;=-

where

[

.

c = 2ma5~ & )Sine+cose (1)

and m, a, h, and D sre the mass density, rim radius, disk thickness, #
and flexural.rigidity, respectively, and L? is the sngular coordinate
on the face of the disk measured frcm the diameter about which the disk
is rotating, the general differential eqy.atim (B19) describing the *

dbensionless deflection Y becomes

(2)

where p is the dimensionless radius defined as the ratio of the radius
at any petit P to the disk rti radius, and where M is a centrifugal
loading parameter defined by

M
_3+v

8
~2a4 ; (3)

where v is Poisson’s ratio for the disk material. The primes in equa-
tion (2) denote derivatives with respect to p.
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w’ The boundary conditions used for all the solutions obtained herein
are:

* (a) The

(b) The

(c) The

(d) The

deflection at the s- is zero.

slope of the disk at the shaft is zero.

total shear at the rim is zero.

radial bending mment at the rim is zero.

The equations expressing these boundary ccmditions as derived in appendix
C are given by

Atp=~ Y=o

At p=~ Y’=o

At P=l

1

(4)
y!, ! + y!l .(3- V)Y’-(3-V)Y=O

At P=l Y“+VY’-VY=O

These are by no means the only set of boundary conditions that could be
used. For ~le, if a disk were to have radial rim loading, boundsry

& conditim (d) which states that the radial bending moment at the rim is
zero would be replaced by one that states that the radial stress at the
rim is equal to the known rim load.

u

The solution of this problem involves the solving of the fourth-
order linear clifferential equation with vsriable coefficients (eq. (2))
stiject to boundary conditions at two points (eq. (4)). For the case
where M equals zero, the exact solution can be readily obtained.

For M not eqyal to zero, recourse must be made to an approximate
solution. The method used herein was to reduce the fouxth-order d3ffer-
ential equation (2) to a set of four first-order clifferential.equatims
and then to solve these by a Runge-Kutta fhit e-clifference technique as
described im appendti D. The method used for satisfying the boundary
conditions is also described in appendix D. Once the clifferentisl equa-
tion (2) is solved along with the chosen boundsx’y-cadition equations,
the radial and tangential bending stresses UR amd aT on the face of
the disk due to the $gn?oscopicbending manents can be obtained by equa-
tions (B20) as

)
~=K~’’+~Y’-;Y

( ) }

(5)

UT =KvY’’+; Y’-~Y
P
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where

K=
(

as “ ‘“-
-12mDSl~ &

)
Sine +cose

RESULTS AND DISCUSSION

(6)

Solutions were obtained ustig the ftiite-differenceequations de-
rived in appendix D for disks of constant thickness with the centrifu-
gal loading parameter M varying from O to 50 and the ratio of shaft to
disk radii varying frcm 0.1 to 0.3. In order to make the cal~tions
for so msqy cases, a high-speed digital co~.uter was used,_ For th.lim-
iting case of M equal to zero, equation (2) reduces to the case of a
stationary disk with normal loadtig. This problem is solved in closed
form in reference 1 (p. 260). Figure 2 shows plots of dimensionless
stress against dhensionless radius for both,the exact- and finite-
difference solutions at this limiting condition of M equal to zero and
for various values of ~. It can be seen that excellent agreement has
been achieved for all the cases investigated.

Figure 3 shows plots of dimensionless stresses and deflections
against dimensimless radii. Each of these plots is for one particular
value of ~ and for a range of values of the centrifugal stress parsm-
eter M. For a given set of operating conditions aud disk gecmetry, the
parameters C, M, and K are calculated frorneqmtions (l), (3), and
(6), respectively. The stresses and deflections at any point in the disk
can then be determined from the curves for the appropriate value of ~.
It should%e noted from this series of figures that the dimensicmless
stresses and deflections both decrease as M increases. However, the
actual stresses and deflections will always increase as M increases.
For a given M, the effect of increasing j3 is to reduce the deflections
and stresses as would be expected.. These trends can alsobe seen in fig-
ure 4, where the dimensionless stresses at the shaft and the dimensim-
less deflections at the rti of the disk sre plotted against the centrifu-
gal stress parameter M for various values of P. These plots are used
to dete?nninethe most critical values of stresses and deflections for
this type of problem.

For an example of the use of these figures b solving the problem
of a parallel-sided disk, consider a disk with a thickness h of 0.50
inch, an outside radius a of g.o inches, a shaft radius of 1.35 inches,

an angular velocity u about its cente~ of 2000 radians per second, an
angular velocity Q and acceleration Q about a diameter of 1 radian
per second and zero radisms per secaad per se$ond, respectively, and a
mass density for the disk material of 0.0008 lb-sec2/in.4, Poisson’s
ratio of 0.3, and a flexural rigidity of 0.345KL06 pound-inches. By
using these values to determine conditions along the radius @ = O, the

v

9

%
o
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centrifugal stress parameter M (frcm eq. (3)], the bending stress parsnL-
eter K (frcm eq. (6)), and the deflection parameter C (frcxneq. (1))
are found to be 12.6, 28X103, and 0.275, respectively. For the value of
M of 12.6 and the calculated value of p of 0.15, the dimensionless
stresses at p = ~ and the dimensionless deflection at p = 1 me found
from figure 4 tobe 0.750, 0.225, and 0.580. When these dimensionless
stresses are multiplied by the bending-stress parameter K, the radial
and tsmgential stresses at the shaft are found to be 2000 and 6300 pounds
per squsre inch, respectively. When the dimensionless deflection is mul-
tipliedby the deflectim parameter C, the maximmm rim deflection is
frond tobe 0.016 inch.

It shouldbe pointed out that these computed ~oscopic stresses are
alw s vibratory stresses. As can be seen from the right side of equation
(Blfl, the gyroscopic load is a function of the angle 8 and, therefore,
as the disk rotates, the load varies with the frequency u/2Yc. The
stresses, therefore, are vibratory stresses also with the frequency u/2Yc.
The complete stress distribution for this disk is obtained by adding these
vibratory bending stresses to the stresses due to the centrifugal loading.

Although these calculations have been performed for the special case
of a constant-thiclmessdisk, the solutims for the more general equation
(B19) for a variable-thiclmess disk may be performed in a similar way
using the sane finite-difference ayproach, the only difference being in
the coefficients of the last of the four finite-difference equations (D8)
and (D9). The radial and tsmgential stresses R and T due to the cen-
trifugal loadtig wiJJ have to be calculated in advance by any of the
avatible methods such as in reference 2. It should also be noted that
variations of Young’s modulus E, due to either temperature or material
variations through the disk, csn be taken tito account very easily by
adjusting the fk.xural rigidity term D.

IIIatig cdcuhtions of this.type, the prob~pres~ts itse~
concerning what values of S2 and Q are likely to occur during opera-
tion. These values, h general) WOUJ-dbe dete~edby the tne Of
msaeuvers the airplane or missile is capable of perforndmg. However,
the occruxen:e of air gusts and groumd bumps may produce greater values
of Q and Q. These effects are, of cuse, dfific~t to *te*e but
some estimate would have to be made before a reasonably safe analysis
couldbe made.

CONCLUIXUSGREMARKS

The snalysis of the ~oscopic loading on a constant-thickness disk
has shown how this effect can be consideredby the designer. For the
case of a unHorm-thicJcaess disk, curves are presented that csm be used
for design purposes. The disk of varisble thickmess with temperature
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gradient requires individual calculation, which cm readily be performed
by the method outlined in this report.

Lewis Flight Propulsion Laboratory
National Adviso~ Committee for Aeronautics

Cleveland, Ohio, December 19, 1957

“

.
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APFZNDIX A

SYMBOIS

disk radius

(

52 “
deflection parmeter, - ~ ~ sine +cOse

)

flexural rigidity, Eh3/12(1 - V2)

Young’s mcihil.usof elasticity

disk thickness

a3 “
(

bending-stress parameter, -1ZWX2 ~ ~ stie+cOse
)

3+V ~2a4 &
centrifugal-l=ding parameter, ~

D

mass density

normal load intensity

radial stress due

radial coordhmte

tangential stress

to centrifugal loading

of point ti disk

due to centrifugal loadtig

disk deflecticm, function of p and e

dimensionless disk deflection, ftmction of p only

ratio of shaft to disk radius

angular coordtite in plane of disk

Poisson’s ratio

dh.ensidess radius, r/a

radial bendhg stress on face of disk due to ggroscopic loading

tmgential bending stress on face of disk due to gyroscopic
loading

SJlgular

regular

sngular

displacement of disk about a diameter x - x (fig. 5)

velocity about disk diameter, rad/sec

velccity about disk center, rad/sec
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APPENllIXB “

DERIVATICN OF DIFFERENTIAL EQUATIGN FUR IXEFLECTIONSOF VXKJXBLE-

THICKNESS DISK SUBJECTED TO GYR-OSCOPICLOADING

If it is assumed that the load per wit area q acting on a plate
is normal to its surface and that the deflections w are small in cmn-
parison with the thickuess h of the plate, the equation of equilibrium
becomes (ref. 1, p. 85)

82%
a’% 2—-

h~2 ‘W’

where the bending mcments ~, h$, ~

%=- D(w=

%=-
D(WW

az&Y=-q
(Bl)

are given by

+ vww)

+ w=)
\

(B2)

& = D(l - V)WW )
where v is Poisson’s ratio and D is the flexural rigidity of the
plate. The bending stresses on the surface of the plate are

%
ax ‘~

36
‘Y = h2

By substituting equations (B2) into equaticm (Bl)
function of x and y, equation (El) becmnes

D(w~ -1-W- + ~-) + D=(wH + VWW) 1-

2DX(W- + Ww) + 2DY(wW + W=) + 2(1

}

(B3)

and letting D be a

DW(WW + VW=) +

V)DWWW = q (B4)

!%-
003

d

9“

where the subscripts on D and w represent partial derivatives with
respect to the subscript. If equation (B4) is converted to polar coor-
dinates and it is assumed that D is only a function of the dimension-
less radius p, equation (B4) becomes
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co
o (B5)
~

where the superscripts on D indicate total derivatives with respect to
P, sad a is the outside radius of the disk. If equations (B2) are sub-
stituted into (B3) and conversion to polar coordtiates is made, the stress
equaticns becc&

‘R

UT

The normal load
as being composed of

. due to the so-called

6D

[(

1 1= -—
a2h2 1~‘PP+V ;w~+~wee

( )J (B6)
6D= -— ~wp+~w
a2h2 P P2 99 + ‘PP

intensity temu q h equation (B5) may be analyzed
two separate loading terms. The first term, ql, is

“gyroscopic forces,” snd the second term, q2j is

due to the normal components of the stresses in the plane of the disk
when the disk undergoes bending out of this plane (fig. 1). For the

“ derivation of the ql term, the coordinate system of figure 5 will be

used. For an aircra& or missile making a turn, the turbine or compres-
sor disk is rotating about its axis and at the ssme time about a diam-
eter fixed in swce. Consider a pofit p on a ~k aS show fi fi~e
5. The disk is rotating about its axis and also about a dismeter that
is at any time coinciden~ tith the X-axis. From reference to t~is fig-
ure, it csn be seen that the ~gulsr velocity u is equal to 9, and the
angular velocity Q equals q. Also, if it is noted frmn the figure
that the magnitude of the vector r remains constant with the t, the
orthonogal components of the acceleration of point P are given by

-(B7)

.

.
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where
is the
un the
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6 is the sngle between the radius vector and the X-axis, ad (p w
angle between the Z-sxis and the projection of the radius vector
YZ-plane. The acceleration of point P normal to the plane of

the disk is given by w

%=%+b~+~ (B8)

where a, b, amd c are the direction costies of the normal to the plsme
“%of the disk. For this case Q

When equations (B7)
acceleration normal

w

a = o

b =Cosql

1

(B9)

c = -sin ql

and (B9) are substituted into equations (B8), the
to the disk becomes

~=r(tisti@+2&cos@) (B1O)

The force per unit sxea m particle P is then given by

qpq. mhr(hstie+mco se) (Bll) ~

For the derivati~ of the second part of the normal load intensity
q2 due to components of the centrifugal forces when the disk undergoes
bendtig, aa element of the disk as shown in figure 6 wi31 be used. Sum-

P

mtig up the Z-capamnts of the forces on this element results in the
following equation:

where R and T are the centrifugal radial and tangential
respectively, and the nmerical subscripts on the thickness

1)-%4-
(B12) —

stresses,
h and the

—

psstial derivatives of the deflection w represent their values at dif-
ferent lccations in the disk element as shown in figure 6. To relate
both the thickness and the derivatives of the deflection at points 1,
2, 3, and 4 to a ccmmon point at the center of the element, the ffist
two terms of a Taylor series expansion is used, from which

.

1.
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.

‘1 ‘h+%%
(B13)

where h3 = lq = h. Substituting equations (B13) back into equation (B12),
dividing through by r dr W and dropping higher order terms, results in

me term a2wpt2 h eqwtion (B14) can be written

Substituting equation (B15) tito equaticm (B14) and
yields

as

(B15)

letting r = ap

q.2=- 1 (m’+: ) hT
a2 PP+~ + “R ‘p + a2p2 ‘ee - nh(uzwee + &w~) (B16)

When equations (B16) and (Bll) are added to give the total normal
load titensity term q, and this temn is stistituted into equation (B5)
and terms involving like derivatives of w are collected, equation (B5)
becomes

‘PPPP +2(:+ ;)wppp-[$-,2+v) 5-;++~wpp+

[

D’ vD”
~-~+~ (

-; hR’+:
]

+h’R WP+LWP2 me -

2;)(

D’ 4 3D‘ lfya2

)
—- —+mz$wee+~ VD“

hwf’ee+ J-z P2’ P2~

1 ● a%
~ ‘6666 + m ~ ‘e (

.211KOQ$ “ )
p*stie+cOse

P
(B17)
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If it is assumed that the disk is rotating about
@ar velocity duxing a change in direc~ion of
zero and a solution to eqyation
fOrm

where Y is only a function of

c = 2mSl as

(B17) may now be

W=(ly

NAC!ATN 4218

its center-at a constant w

its axis, o is equal to
assumed to be of the

b

(B18)

the dimensionless radius p, and where

Substituting equation (B18) into (B17)
eq.mtion

y +2&2)y11i - [~-(2

and the stress

)sin e + cos @

results in the total differential

L3 3D‘ +g—-—
3 (

.gm’+~
)]

+h’R Y’ -
p% @

equations (B6) become

UT
—=
K ( ))vY’’+$Y:-~Y ~2

)
‘% ( )—=Y“+; Y’-~Y
K

P’

where

~ . -lamas &
h (= )

sin e + cos .9

(B20)

(B21)

.

“
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* For a solid disk of constant thickness, the centrifugal radial and
tangential stresses sxe given simply by

.

(B22)

al
: where the centrifugal stresses due to the disks rotation about its diam-

eter have been neglected since Q will always be much smaller than u
for all practical cases. All the derivatives of D and h with respect
to p are equal to zero and under these conditions, equation (B19) re-
duces to

&M(y2j’lY=p

where the centrifugal loading parsmeter M is given by.

(B23)

(B24)
.

.

.
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AFPENDU c! :

BOUNDARY-CONDITIONEQU&TIONS

A set of four boundary conditions are needed for the solution of the
fourth-order
mal loading.
the bcnmdary

(a) The

(b) The

(c) The

(d) The

differential equation of the deflection of a disk under nor-
For a freely rotating single disk such as a turbine tieel,
conditions will be taken as follows:

deflection at the shaft is zero.

slope of the disk at the shaft is zero.

total shear at the rti is zero.

radial bending moment at the rim is zero.

The total shear V is givenby (ref. 1, p. 259)

and

where

(cl)

.

w

(C2)

if equations (C2) are substituted into (Cl) and r = ap then

(D b3w + 1 a2w 1 aw 2 -V

)

b3w 3 - v a2wv.-——
a3 ?lp3

.—-TF+F—.— -——
p apz ?@e2 P3 a02 (C3)

If the total shear is equal to zero at the rim (or p = 1) equation
(C3) becomes

o=&+a2w aw a3w
~+(2-v)— -

ap3 ap2
(3-V)5 (C4)

apaez

.

.
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The radial mment is equal to (ref. 1, p. 259)

If r=ap andif
tion (C5) becomes

this radial mcment is equal to zero

The last two boundary conditions are given

a2w
‘s

simply by

and
)
atp=J3

$=0J

where ~ is the ratio of the shaft radius to the disk

15

(C5)

at the rim, equa-

(C’6)

(C7)

radius.

.

—
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APPENDIX D v

(Dl)

FINITE-DIITERENCEEQUATIONS w

1+
In order to obtain a solution to the general differential eqpation s

(B19), it is convenient to reduce this fourth-order equation toa set of al

four first-order eqwtions as follows; let

y’=J

y“=J’=K

y~!l=KtsL.
“}

and equation (B19) becomes

L’=E -AL-BK-CJ-DY (D2)

where A, B, (J,D, and E are the corresponding coefficientsappearing
in equation (B19). These equations can now be written in finite-
difference form using a simple Runge-Kutta method (ref. 3, p. 233). Con-
sider a section of a disk as shown in figure 7__wherethere are n equally
spaced stations between
series expansion for Y
Y at the t station

Yi+l

If the first-three terms
the second derivative is

equation (D3} reduces to

..

P = j3 and P= -1. Consider the following Taylor -
at the i + 1 station in terms of the value of .

—
-.

&2
(D3) “.=Yi+APY~+~ Y;+”” “

of equation (D3) are used and it is assumed that
approximated by

(D4)

(D5)

If the first of eqmtions (Dl) is substituted in (D5), equation (D5)
becames
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?
* (Ji + ~+1Yi+~ = Yi + 2 )

. and in a stiilar manner the values of J, K, and L at the
i+l station are obtained with the aid of equations (Dl) and
(D2)

Ji+l = Ji + $ (~ + ~*+1)

%+1 = Ki + * (% + L;+l)

[-~ (AiLi +Biq +ciJi +Diyi} +‘i+l = ‘i

(D6)

‘1(Ai+lL1+l +Bi+lK1+l +Ci+lJl+l +Di+lyY+l~ +

)
where the starred exponents represent first approximations to these val-
ues. These terms wilJ be obtained from the first two terms of the Taylor.
series or

.

}

(D?)

If the problem of a solid disk of constant thickess is to be solved,
equation (B23) is substituted into the last of equations (D6) and (D?) and
the values of Y, J, K, and L at the i+l station can nowbe written in
terms of the i station as
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where the starred terms are given by

Y;+l=Yf-1-LQq
1

The solution of the differential equation (B23) has thus been re-
duced to ccnnputationof a set of deflections and corresponding deriva-
tives by means of the recurrence relations (D8) and (D9). It must be
remembered that the solutions which satis~ equations (D8) and (D9) must
also satism the boundary conditions (C8). Such a set of solutions can
be obtained in the following manner: —

Let Y(l), J(l/ #~, @ , -d Y(2), J(2), K(2), L(2), k two
homogeneous solutions for Y, J, K, and L (that is, solutions for eqs. (D8) .
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--“ and (D9)) with the last terms

AP/2 (Pi + Pi+l) and ~(pi)~

in the Li+l

respectively,

19

and L~+l expressions, namely

being equal to zero) and let

d (3), J(3), K(3), md $3)
Y be particular solutions for Y, J, K, and L.
It.mthermore,let these three solutions satisfy the boundary conditions
that Y=Y’=0 at p=~. This corresponds to Y1 and J1 being

al
o
F
+

zero. Since equation (B23) md the
tions (D8) are linear, the ccmrplete
written as

(1)
Ji=aJi +

where a and b are determined so

corresponding finite difference equa-
solution to eqyations (D8) cau be

byp]

[2]
bJi

(2)
b%

~L(2)
i

as to.
tions at p = 1. It shouldbe noted that

+ Yy.
(3}

+ Ji

(3)
‘%

+ L(3J
i

(D1O)

satism the two boundary condi-
if the solutions were not chosen

in order to satisfy two of the boundary conditions, two additional sets

. Y(4), Y(5), J(4), J(5)
etc. would have to be included to satisfy the two

boundary conditions at p = p. To obtain a and b, equation (D1O) is
substituted into the last two of equations {C8), or at p = 1.

(~(l)n +bLf)+L(3) +(A'}+bJ2}+K(3) .(3-v, [(w(l) +#')+J$) -&(l) +bYy)+Yy) -0
n n nn n n n II)

.
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The starting values for the three solutions that were assumed and that
satisfy the bounda~- conditions at the first station p = ~ or i = 1
are

When these starting values are used in the recurrence relations (D8) and
(D9), values for Y, J, K, and L can be computed successively for all
other stations. Once the values are computed for the last, or n station,
the constants a and b are obtained fkm equations (Dll) and the ccm-
plete solution is then givenby equations (D1O).
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Figure 1. - Loading on disk due to rotatia about two
axes. Arrow length is proportional to gyroscopic
force.
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Figure 3. - Variation of dimensionless radial stress, tangential
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Figure 3. - Continued. Variation of dimensionless radisl stress,
tangential stress, and deflection with dimensionless radius for
various values of centrifugal loading parameter.



1

1
, .

0 .20 .40 .M1 .80 1.0

Dimensionless radius, p

(d ~tio Or smt to Msk radius, 0.250.

Figure 3. - Continued. Vsxiation of dimensionless radial stres~,

tangential stress, and deflection with dimensionless radius for

various values of centrifugal losdl.ng pmwneter.

80,!!7

ii!
tP

s
CD



● ●

4708

.

.04 .50

.02 .25

0 .20 .40 .60 .80 1.0

Dimensionless raiklus, p

(h) Ratio of Bhaft to disk radius, 0.300.

Figure 3. - Concluded. Variation of dimensionless radisl stress,

tangential stress, and deflection with dimensionless radius for

various values of centrifugal loading parameter.

4 .

m
P



32 NACA TN 4218

1.4

1.2
Ratio of shaft

1.0

.80-

.80

.40
—

.20,
0 10 20 30 40 50

Centrifugal loading.psxameter,M

(a) Radial stress.
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Figure 5. - Coordinate system for calculating acceleration of point P in disk.
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Figure 7. - Section of disk tith stations for fitite difference
equations.
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